电工学习网

 找回密码
 立即注册

如何理解工业大数据

2015-12-18 11:38| 编辑:电工学习网| 查看: 3164| 评论: 0

  大数据的理念已经广为大众所接受,其核心都强调价值。目前,除了大数据的基础建设之外,从数据到信息的工作,更多的是停留在社交或商业数据挖掘上。例如,销售预测、用户关系挖掘与聚类、推荐系统、观点挖掘等。这些研究都非常重要,也极具创新意义,特别是对拉动消费很有帮助。但是,这些实践都只关注了“人为数据或与人相关的数据”,而忽略了“机器数据或工业数据”,如设备控制器、传感器、制造系统等。
  产品做出来之后,到底如何使用它?以前关心的是如何生产最好的产品,现在关心的是产品怎么去用,消费体验在哪里?第一,我们现在对工业价值的认知必须从后往前移,从消费端走到生产价值链前端。第二,从关注机器与机器的数据或工业环境数据,到全面协同优化,关注这个价值体系,实现我们对工业4.0的完整理解。
  在工业大数据的实践中,宏观与微观、规模与定制、个性与共性必然成为主要的几个矛盾。在这三大矛盾的背后,我们要通过工业大数据看到我们以前看不到的因素,处理好这些数据,就像Jay Lee教授讲的,让数据成为有价值的信息。工业4.0的五个支撑力值得我们关注。一是降低生产过程中的浪费。生产过程中的消耗来源于组织与组织之间、人与人之间、材料与工艺之间、流程之间,所以我们首先要考虑的问题是,如何降低消耗、浪费。二是制造工业环保与安全。没有碳排放是不现实的,但排放怎么转移,怎么去消费它是问题。三是根据生产状况,实现系统自我调整。在工业大数据里,我们称之为自适应。整个工业4.0讲的就是自适应、自感应、自调理。大数据分析到最后有很大程度取决于人工智能,指的是自适应能力的强弱,机器自我学习能力的强弱。四是实现制造业的价值化。五是实现用户需求、产品设计、制造和营销的配合。
  这五大支柱的焦点就是显性因素和非显性因素。我们曾经关心的是产品的制造、产品的制造工艺、产品本身的质量等显性因素。考虑的点都是可触摸的或可量化的。在工业大数据里,想要解决的问题就是那些非显性因素。
  设备处于亚健康状态,我们看不到。对于未来的智能工业来说,想要达到零宕机、零排放、零维修等目的,必须突破的一个关键点就是关注相关的隐形因素,做好量化与数据交叉关联分析。

看过《如何理解工业大数据》的人还看了以下文章:

发表评论

最新评论

  • 2020年电工职业资格证取消了?电工职业资格
  • plc编程工资多少一个月
  • 电工工资高吗?电工工资怎样?电工工资多少好
  • 自动化专业和电气工程及其自动化专业哪个就
  • 电工朋友注意啦,国家发布新版电工证,再也
  • 家电售后挣钱多吗?家电售后维修挣钱吗?现在

电工学习网 ( )

GMT+8, 2021-12-6 20:49

Powered by © 2011-2021 www.shop-samurai.com 版权所有 免责声明 不良信息举报

技术驱动未来! 电工学习网—专业电工基础知识电工技术学习网站。

栏目导航: 工控家园 | 三菱plc | 西门子plc | 欧姆龙plc | plc视频教程

返回顶部