分布式电能存储系统(DESS)的应用涉及配用电系统中的各个环节,与大规模、集中式的储能电站相比,分布式电能存储系统对接入位置的环境条件限制较少,接入电网的方式更加灵活,在配电网、微电网、分布式电源侧,以及用户侧都可以发挥独特的作用。 1.在配电系统中的应用 参与系统调峰。利用分布式电能存储系统在高峰负荷时放电,在低谷负荷时充电,可有效实现负荷的削峰填谷。其效果可体现在如下3个方面: ① 缓解电网功率阻塞; ② 延缓配电网升级改造; ③ 降低网络能量损耗。 参与系统频率调节。分布式电能存储系统具有响应速度快、输出功率控制精度高等特点,十分符合电网调频的需求。与传统调频电源相比,分布式电能存储系统具有较为明显的技术优势。随着分布式电能存储系统成本的下降,在调频服务中也将逐渐显现出其经济性。 参与系统或馈线级调压。大量分布式电源在配电系统中接入,将直接改变配电网中功率的流动规律,造成一些节点电压的升高。利用分布式电能存储系统有功功率的调节能力,可以有效缓解分布式电源接入后的节点电压升高问题,提高配电网对分布式电源接纳能力。 2.在改善分布式电源运行特性方面的应用 平滑分布式电源的功率波动。将分布式电能存储系统与光伏发电、风电等波动性分布式电源紧密配合,利用储能的快速充放电特性平抑这些电源的快速波动,可在一定时间尺度上(分钟至小时级)实现输出功率的平滑,显著提高这些电源的功率输出品质,降低其对系统的影响。 实现分布式电源端节点电压控制。将分布式电源直接与储能系统相配合,对分布式电源的端电压实现有效控制,在馈线中一定比例的分布式电源上采用这样的手段,完全可以克服馈线节点电压升高问题。该方案不会随分布式电源的接入改变系统运行或控制策略,能够实现“即插即用”。 增强分布式电源的功率可调度性。将分布式电能存储系统与风电和光伏发电等分布式电源有效加以集成,对电网而言形成一个统一的单元,实现在一定时间尺度(分钟至小时级)上输出总功率的调节,进而使其具备一定程度的可调度性。 3.在微电网中的应用 实现联络线功率控制。微电网联网运行时,微电网与配电网间联络线功率的波动可能对配电网产生较大的影响。通过对微电网中分布式电能存储系统的控制,能将联络线功率的波动控制在一定范围之内。联网运行时,对配电网而言,微电网将成为一个可调度的电源(或负荷),可以利用微电网实现一些电网辅助服务功能,进而更多地发挥出微电网的技术优势。 支撑系统电压与频率。微电网孤岛运行模式时,分布式电能存储系统可作为微电网的主电源提供电压和频率支持,发挥快速响应的特点,实时平衡微电网中的功率波动,维持电压和频率稳定。此外,分布式电能存储系统还可以在微电网运行模式切换时提供暂态功率支撑,尽可能减小对用户负荷的冲击。 4.在用户侧的应用 发挥不间断电源作用。分布式电能存储系统由于具有快速响应能力,可以作为不间断电源(UPS),在停电时确保重要负荷供电,提高供电可靠性,这一模式已经获得广泛应用。 实现需求侧响应。安装在用户侧的分布式电能存储系统,可用于参与需求侧响应,帮助用户在不改变用电习惯的情况下进行错峰用电,降低购电费用。对于电网而言,错峰用电将会显著提高电网的资产利用率,延缓系统改扩建,具有多方面的经济性。 改善电能质量。间歇性的分布式电源和大量电力电子设备的应用可能会造成高次谐波、电压闪变、电压跌落等电能质量问题。在用户侧接入分布式电能存储系统,能快速响应系统中各种扰动,有效控制波形畸变率在较小的范围内,提高用户电能质量。 |
电工学习网 ( )
GMT+8, 2021-12-6 20:49